A Novel Triterpenoid from Petasites tricholobus

Wei Dong XIE, Ping Lin LI, Zhong Jian JIA*
Department of Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000

Abstract

A novel triterpenoid, D:B-friedoursane-3 $\alpha, 16 \alpha$-dihydroxy- $7 \alpha, 8 \alpha$-epoxy-5(10)-ene, named petatrichol A, was isolated from the roots of Petasites tricholobus Franch.. Its structure was elucidated by spectroscopic methods, especially 2DNMR techniques.

Keywords: Petasites tricholobus, Compositae, triterpenoid, petatrichol A.

Some genus of Petasites was used as folk medicine in China for detoxification, detumescence and treatment of viper bite ${ }^{1}$. In order to find the medical value, we studied the chemical constituents of Petasites tricholobus. A novel triterpenoid compound $\mathbf{1}$, possessing a migrated ursane skeleton with $\Delta^{5,10}$ double bond and 7, 8 epoxy in the molecule, was isolated from this plant. Its structure elucidation was reported here.

Compound 1, m.p. $186-187{ }^{\circ} \mathrm{C}$, $[\alpha]_{\mathrm{D}}^{17}+43\left(c 0.2, \mathrm{CHCl}_{3}\right)$, was isolated as white powder. Its EIMS spectrum showed the molecular ion peak at $\mathrm{m} / \mathrm{z} 456$, combined with the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{CNMR}$ (DEPT) data, the molecular formula was deduced to be $\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{O}_{3}$.

Figure 1 Compound 1 and the key correlations observed in NOESY spectrum of $\mathbf{1}$

[^0]Table $1 \quad{ }^{1} \mathrm{H}(400 \mathrm{MHz}),{ }^{13} \mathrm{CNMR}(100 \mathrm{MHz})$, DEPT data and HMBC correlations of compound $\mathbf{1}\left(\mathrm{CDCl}_{3}, \mathrm{TMS}, \delta_{\mathrm{ppm}}\right)^{*}$

No.	$\delta_{\text {H }}$	$\delta_{\text {C }}$	DEPT	HMBC
1	2.02 (m), 1.96 (m)	20.9	CH_{2}	C-10
2	1.64 (m), 1.60 (m)	26.7	CH_{2}	C-10, C-1, C-3, C-4
3	3.50 (dd, $J=6.4 / 4.4 \mathrm{~Hz})$	75.2	CH	
4	-	39.0	C	
5	-	126.4	C	
6	2.62, 2.24 (brd, $J=17.4 \mathrm{~Hz}$)	26.1	CH_{2}	C-5, C-7, C-8
7	3.16 (brd, $J=3.2 \mathrm{~Hz}$)	51.3	CH	C-5, C-8
8	-	67.1	C	
9	-	40.1	C	
10	-	134.9	C	
11	1.39 (m), 1.35 (m)	28.7	CH_{2}	
12	1.49 (m), 1.43 (m)	28.5	CH_{2}	
13	-	40.4	C	
14	-	42.3	C	
15	1.59 (m), 1.13 (m)	32.8	CH_{2}	C-14, C-16
16	3.75 (dd, $J=12.8 / 5.2 \mathrm{~Hz}$)	77.2	CH	
17	-	37.9	C	
18	1.25 (m)	53.5	CH	C-29
19	1.10 (m)	35.7	CH	C-27, C-30
20	1.61 (m)	31.9	CH	
21	1.58 (m), 1.16 (m)	28.9	CH_{2}	
22	1.86 (m), 1.64 (m)	26.7	CH_{2}	
23	1.05 (s)	26.0	CH_{3}	C-3, C-4, C-5, C-24
24	0.94 (s)	22.2	CH_{3}	C-3, C-4, C-5, C-23
25	1.20 (s)	26.0	CH_{3}	C-8, C-9, C-10, C-11
26	1.24 (s)	20.9	CH_{3}	C-8, C-13, C-14, C-15
27	1.01 (s)	16.9	CH_{3}	C-12, C-13, C-14, C-18
28	1.23 (s)	35.2	CH_{3}	C-16, C-17, C-18, C-22
29	$1.02(\mathrm{~d}, J=6.0 \mathrm{~Hz})$	25.1	CH_{3}	C-18, C-19, C-20
30	0.93 (d, J=6.0 Hz)	22.6	CH_{3}	C-19, C-20, C-21

*assigned by HSQC and HMBC spectrum
The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{CNMR}$ (DEPT) spectrum of $\mathbf{1}$ displayed the signals of six tertiary methyls, two secondary methyls, eight methenes, six methines (three of them were connected with oxygen) and eight quarternary carbons, which indicated that compound $\mathbf{1}$ was a pentacyclic triterpenoid possessing a tetrasubstituted double bond (δ_{C} 126.4,134.9, C), two methines connected with hydroxy ($\delta_{\mathrm{H}} 3.50,3.75$ and $\delta_{\mathrm{C}} 75.2,77.2$) and an epoxide group ($\delta_{\mathrm{H}} 3.16$ and $\delta_{\mathrm{C}} 67.1 \mathrm{C}, 51.3 \mathrm{CH}$) (Table 1). The IR spectrum also revealed the presence of hydroxy ($3380 \mathrm{~cm}^{-1}$) and double bond ($1665 \mathrm{~cm}^{-1}$).

The skeleton of compoud 1 was constructed by the correlations of eight methyls in HMBC spectrum (Table 1). In the HMBC spectrum, the correlations of $\mathrm{H}-1\left(\delta_{\mathrm{H}} 2.02\right.$, 1.96) with $\mathrm{C}-10\left(\delta_{\mathrm{C}} 134.9\right), \mathrm{H}-2\left(\delta_{\mathrm{H}} 1.64,1.60\right)$ with $\mathrm{C}-10\left(\delta_{\mathrm{C}} 134.9\right), \mathrm{C}-1\left(\delta_{\mathrm{C}} 20.9\right), \mathrm{C}-3$ ($\delta_{\mathrm{C}} 75.2$), $\mathrm{C}-4\left(\delta_{\mathrm{C}} 39.0\right), \mathrm{CH}_{3}-23\left(\delta_{\mathrm{H}} 1.05\right)$ with $\mathrm{C}-3\left(\delta_{\mathrm{C}} 75.2\right), \mathrm{C}-5\left(\delta_{\mathrm{C}} 126.4\right), \mathrm{CH}_{3}-24\left(\delta_{\mathrm{H}}\right.$ 0.94) with $\mathrm{C}-3\left(\delta_{\mathrm{C}} 75.2\right)$, $\mathrm{C}-5\left(\delta_{\mathrm{C}} 126.4\right)$ and $\mathrm{H}-6\left(\delta_{\mathrm{H}} 2.62,2.24\right)$ with $\mathrm{C}-5\left(\delta_{\mathrm{C}} 126.4\right)$ indicated that a double bond was between C-5 and C-10 and a hydroxyl group was located at C-3. The fragment peaks in EIMS at $m / z 412$ (1), 44 (17) and 43 (100), which were caused by RDA cleavage (Figure 1), further confirmed the presence of the
$5(10)$-ene structure. The correlations of H-7 ($\delta_{\mathrm{H}} 3.16$) with C-8 ($\delta_{\mathrm{C}} 67.1$), and H-6 (δ_{H} $2.62,2.24$) with $\mathrm{C}-7\left(\delta_{\mathrm{C}} 51.3\right), \mathrm{C}-8\left(\delta_{\mathrm{C}} 67.1\right)$ confirmed that the epoxide group was between C-7 and C-8, and the correlations of $\mathrm{CH}_{3}-28\left(\delta_{\mathrm{H}} 1.23\right)$ with $\mathrm{C}-16\left(\delta_{\mathrm{C}} 77.2\right), \mathrm{H}-15$ $\left(\delta_{\mathrm{H}} 1.13,1.59\right)$ with $\mathrm{C}-16\left(\delta_{\mathrm{C}} 77.2\right)$ indicated that the second hydroxyl group was at $\mathrm{C}-16$. The coupling contants of H-3 (dd, $J=6.4 / 4.4 \mathrm{~Hz}$), $\mathrm{H}-16(\mathrm{dd}, J=12.8 / 5.2 \mathrm{~Hz}$) and H-7 (brd, $J=3.2 \mathrm{~Hz}$) showed the presence of α-hydroxy at C-3, C-16 and $7 \alpha, 8 \alpha$-epoxy. The correlations of $\mathrm{H}-7\left(\delta_{\mathrm{H}} 3.16\right)$ with $\mathrm{CH}_{3}-26\left(\delta_{\mathrm{H}} 1.24\right)$ in NOESY spectrum further supported the α configuration of epoxy. The 25, 26, 28, 29 methyls and H-18 were on β side, which can be deduced from the cross peaks in NOESY spectrum (Figure 1). The correlations between $\mathrm{H}-19$ and 27, 30 methyls, at the same time, not having correlation between 26 and 27 methyls indicated that 27 and 30 methyls were on α side. The skeleton of $\mathbf{1}$ and relative configurations of these methyls were the same as that of rhoiptelenol ${ }^{2,3}$. Based on the above evidence, compound $\mathbf{1}$ was determined as D:B-friedoursane- $3 \alpha, 16 \alpha$-dihydroxy- $7 \alpha, 8 \alpha$-epoxy- $5(10)$-ene, and named as petatrichol A.

Acknowledgments

This project was supported by the NNSFC (No. 2997201).

References

1. Jiangsu New Medical Collage, Chinese Medicine Dictionary, Shanghai People's Publishing House. Shanghai, 1977, p. 2483.
2. J. Kitajima, M. Arai, Y. Tanaka, Chem. Pharm. Bull., 1994, 42 (3), 608.
3. Z. H. Jiang, R. H. Zhou, K. Masuda, H. Ageta, Phytochemistry, 1995, 40 (1), 219.

Received 9 May, 2004

[^0]: *E-mail: jiazj@lzu.edu.cn

